-
Environnement: Istanbul risque un séisme de forte magnitude + vidéo
Istanbul risque un séisme de forte
magnitude
Une équipe franco-germano-turque a déposé au fond de la mer de Marmara, au large d’Istanbul, un réseau de balises pour mesurer les mouvements de part et d’autre d’un segment de la faille sismique nord-anatolienne. Surprise : il n'y en a pas. Ce n'est pas une bonne nouvelle car, si cette immobilité est confirmée, cela signifierait que la faille est bloquée. L’accumulation progressive d’énergie pourrait alors provoquer un séisme de grande magnitude.
La faille nord-anatolienne est responsable du tremblement de terre destructeur dans la région d’Izmit, en Turquie, le 17 août 1999. Environ 17.000 personnes perdirent la vie dans ce séisme de magnitude 7,6, qui dura 37 secondes. © Sadik Gulec, shutterstock.com
La faille nord-anatolienne, responsable de tremblements de terre destructeurs en 1999 en Turquie, est comparable à la faille de San Andreas en Californie. Elle constitue la limite des plaques tectoniques eurasiatique et anatolienne, qui se déplacent l’une par rapport à l’autre d’environ 2 cm par an.
Le comportement d’un segment sous-marin de cette faille, situé à quelques dizaines de kilomètres au large d’Istanbul, en mer de Marmara, intrigue particulièrement les chercheurs, car il semble exempt de sismicité depuis le XVIIIe siècle. Comment se comporte ce segment ? Glisse-t-il en continu, cède-t-il régulièrement, provoquant de petits séismes épisodiques de faible magnitude ou bien est-il bloqué, laissant présager une future rupture et donc un fort séisme ?
Zones et années de rupture de la faille nord-anatolienne. Le segment sous-marin au sud d’Istanbul n’aurait pas généré de séismes majeurs depuis le 18e siècle. Le rectangle noir situe la zone d’étude. © J-Y Royer, CNRS-UBO, LDOUne approche dite de « géodésie acoustique
fond de mer »
Observer in situ le mouvement d’une faille sous-marine sur plusieurs années est un vrai défi. Pour le relever, les chercheurs testent une méthode de télédétection sous-marine innovante, à l’aide de balises acoustiques actives, autonomes et interrogeables à distance depuis la surface de la mer. Posées sur le fond marin de part et d’autre de la faille à 800 mètres de profondeur, ces balises s’interrogent à tour de rôle par paire et mesurent le temps aller-retour d’un signal acoustique entre elles.
Ces laps de temps sont ensuite convertis en distances entre les balises. C’est la variation de ces distances dans le temps qui permet de détecter un mouvement des fonds marins et la déformation du réseau de balises, de déduire les déplacements de la faille.
Concrètement, un réseau de dix balises françaises et allemandes a été déployé lors d’une première campagne en mer par le navire océanographique Pourquoi pas ? avec le concours du laboratoire Géosciences marines de l’Ifremer en octobre 2014. Les six premiers mois de données (temps de parcours, température, pression et stabilité) recueillies depuis la surface au cours de la campagne du navire océanographique allemand Poseidon, en avril 2015, confirment les performances de la méthode. Après calculs, elles ne révèlent aucun mouvement significatif de la faille surveillée, dans la limite de résolution du réseau. Les distances entre balises, séparées de 350 à 1.700 mètres, sont mesurées avec une résolution de 1,5 à 2,5 mm. Ce segment serait donc bloqué, ou quasiment, et accumulerait des contraintes susceptibles de générer un séisme.
Réseau de balises acoustiques (françaises en rouge, allemandes en jaune) déployées en mer de Marmara, de part et d’autre d’un segment sous-marin de la faille nord-anatolienne (FNA), dont la trace présumée est soulignée par des tirets. © J.-Y. Royer, CNRS-UBO, LDOCette technique novatrice pourrait être
appliquée ailleurs
L’acquisition d’information sur plusieurs années sera cependant nécessaire pour confirmer cette observation ou caractériser un fonctionnement plus complexe de cette portion de faille. Si, au-delà de cette démonstration, cette approche dite de « géodésie acoustique fond de mer » s’avère robuste sur le long terme (3 à 5 ans sont envisagés dans la limite d’autonomie des batteries), elle pourrait être intégrée dans un observatoire sous-marin permanent en complément d’autres observations (sismologie, émission de bulles…) pour surveiller in situ et en temps réel l’activité de cette faille en particulier, ou d’autres failles actives sous-marines dans le monde.
Cette étude, issue d’une collaboration entre des chercheurs français, allemands et turcs, vient d’être publiée dans Geophysical Research Letters. Les travaux sont menés par le laboratoire Domaines océaniques (LDO, CNRS/Université de Bretagne occidentale), en collaboration avec le laboratoire Littoral environnement et sociétés (CNRS/Université de La Rochelle), l’institut Geomar à Kiel (Allemagne), le Centre européen de recherche et d’enseignement de géosciences de l’environnement (CNRS/Collège de France/AMU/IRD), le laboratoire Géosciences marines de l’Ifremer, l'Eurasian Institute of Earth Sciences de l’université Technique d’Istanbul (Turquie) et le Kandilli Observatory and Earthquake Research Institute de l’université Bogazici d’Istanbul. Cet article est dédié à la mémoire d’Anne Deschamps, chargée de recherche CNRS au LDO, initiatrice et responsable du projet, décédée peu après avoir conduit avec succès le déploiement de ces balises.
À découvrir en vidéo autour de ce sujet :